ECE 172A: Introduction to Image Processing Morphological Processing: Part I

Rahul Parhi Assistant Professor, ECE, UCSD

Winter 2025

Outline

- Morphology: Introduction
- Basic Definitions
- Erosion and Dilation
- Opening and Closing
- Distance Map and Watershed
- Graylevel Morphology
- Morphological Filtering

Morphology: Introduction

What does morphology even mean?

The study of shape and structure

- Language: Set Theory
 - Binary images (bitmap)
 - \implies Sets of points in 2D space (\mathbb{Z}^2)

- Quantized graylevel images
 - \implies Sets of points in 3D space (\mathbb{Z}^3) $(x,y,Q(f(x,y)))\in\mathbb{Z}^3$

- Types of transformations
 - Set-theoretic: Union, intersection, etc.
 - With a stucturing element: dilation, erosion

Morphology: Application Areas

Classification of objects or image features based on shape

Examples

- Extraction of objects with a specific shape
- Extraction with a size smaller or greater than a limit
- Contour detection
- Typical stages in an image-processing pipeline where it is useful
 - Preprocessing: noise reduction, simplification
 - Feature detection
 - Segmentation: Contour extraction
 - Postprocessing: shape cleaning and simplification

Main application areas

- Material sciences, mineralogy, granulometry
- Medicine and biology: Cell counting, cytology, gel electrophoresis, microarrays
- Robotics and machine vision

Basic Definitions

"Universe" set

 $\mathbb E$ is the set of every possible element (e.g., $\mathbb E=\mathbb Z^2$ or $\mathbb E=\mathbb Z^3$ or $\mathbb E=\mathbb R^2$)

Sets and subsets

$$A, B \subset \mathbb{E}$$

Elements: $a = (a_1, a_2) \in A$, $b = (b_1, b_2) \in B$

• Translation by $x = (x_1, x_2)$

$$(A)_x = \{c : c = a + x, a \in A\}$$

Basic Definitions (cont'd)

Reflection or symmetry

$$A^{\mathbf{s}} = \{ x \in \mathbb{E} : x = -a, a \in A \}$$

Complement

$$A^{c} = \{ x \in \mathbb{E} : x \in \mathbb{E} \setminus A \}$$

Dilation and Erosion in \mathbb{R}^2

Structuring element

Dilation

$$A \oplus B = \{x \in \mathbb{E} : (B^{\mathrm{s}})_x \cap A \neq \emptyset\} = \bigcup_{x \in A} (B)_x$$

Erosion

$$A \ominus B = \{x \in \mathbb{E} : (B)_x \subset A\} = \bigcap_{x \in B^s} (A)_x$$

Example

Dilation and Erosion in \mathbb{R}^2

Structuring element

$$B$$
 \leftarrow origin

Dilation

$$A \oplus B = \{x \in \mathbb{E} : (B^{\mathrm{s}})_x \cap A \neq \emptyset\} = \bigcup_{x \in A} (B)_x$$

Erosion

$$A \ominus B = \{x \in \mathbb{E} : (B)_x \subset A\} = \bigcap_{x \in B^s} (A)_x$$

Duality relations

$$A \ominus B = (A^{c} \oplus B^{s})^{c}$$

"Erosion = Dilation of complement"

$$A \oplus B = (A^{c} \ominus B^{s})^{c}$$

"Dilation = Erosion of complement"

Dilation and Erosion in \mathbb{Z}^2

Structuring element

Dilation

$$A \oplus B = \{x \in \mathbb{E} : (B^{\mathrm{s}})_x \cap A \neq \emptyset\} = \bigcup_{x \in A} (B)_x$$

Erosion

$$A \ominus B = \{x \in \mathbb{E} : (B)_x \subset A\} = \bigcap_{x \in B^s} (A)_x$$

Opening

Opening operator

$$A \circ B = (A \ominus B) \oplus B$$

- Interpretation 1: "Smallest" set that contains a given erosion $A \ominus B$
- Interpretation 2: Union of all shifted B's included in A

$$A \circ B = \bigcup_{x \in \mathbb{E}} \{ (B)_x : (B)_x \subset A \}$$

Properties

- Subset $A \circ B \subset A$
- Invariance to origin $A \circ (B)_x = A \circ B$ for all $x \in \mathbb{E}$
- Idempotence $(A \circ B) \circ B = A \circ B$
- Order preservation $C \subset D \Rightarrow (C \circ B) \subset (D \circ B)$

Closing

Closing operator

$$A \bullet B = (A \oplus B) \ominus B$$

- Interpretation 1: "Largest" set that contains a given dilation $A\oplus B$
- Interpretation 2: Complement of all shifted $B^{
 m s}$'s included in $A^{
 m c}$

$$A \bullet B = \left(\bigcup_{x \in \mathbb{E}} \{ (B^{s})_{x} : (B^{s})_{x} \subset A^{c} \} \right)^{c}$$

Properties

- Superset $A \bullet B \supset A$
- Invariance to origin $A \bullet (B)_x = A \bullet B$ for all $x \in \mathbb{E}$
- Idempotence $(A \bullet B) \bullet B = A \bullet B$
- Order preservation $C \subset D \Rightarrow (C \bullet B) \subset (D \bullet B)$

Duality Relations

Erosion and dilation

$$A \ominus B = (A^{c} \oplus B^{s})^{c}$$

$$A \oplus B = (A^{c} \ominus B^{s})^{c}$$

Opening and closing

$$A \circ B = (A^{c} \bullet B^{s})^{c}$$

$$A \bullet B = (A^{c} \circ B^{s})^{c}$$

Distance Map and Watershed

$$A_0[\mathbf{k}] = \begin{cases} 1, & \mathbf{k} \in \text{object} \\ 0, & \mathbf{k} \in \text{background} \\ n = 0 \end{cases}$$

background

Dam

original image

thresholded image

local maxima

 \Rightarrow

seeds of watersheds